Processing math: 100%

Devoir surveillé N°1 semestre 1 tronc commun biof site mathsbiof


Devoir surveillé N°1 semestre 2 tronc commun biof devoir sur la droite dan le plan et polynomes 2020-2021 année de corona . Essayez de terminer les exercices par vous-même et envoyez-les à votre professeur pour qu'il les corrigés. Bon chance ce devoir réalisé par Prof : MOUAD ZILLOUet partager par prof elmoudene

Exercice 01 : les polynômes-racines- division euclidienne 9pts .



Soit P(x) un polynôme définie par P(x)=2x37x+7x2

  • 1) Montrer que 2 est une racine de P(x).
  • 2) Déterminer le polynôme Q(x) tel que P(x)=(x2)Q(x).
  • 3) Calculer Q(12). Que peut-on déduire ?
  • 4) Déterminer les réels aetb tel que Q(x)=(x12)(ax+b)
  • 5) Factoriser P(x) en produit des binômes.
  • 6) Résoudre dans R l’équation P(x) .
  • 7) Déduire , dansR, les solutions de l’équation 2(2x+23)37(2x+23)2+7(2x+23)2=0 .

 


01
1.5

01

1.5
1.5

02
1.5

Exercice 02 : Équation d'une droite -représentation paramétrique d'une droite- positions relatives 9,5pts.



Le plan est rapporté à un repère orthonormé (O;i;j) .On considère les points A(1;2) , B(4;4) et C(2;1) .
  • 1) Déterminer les coordonnées des vecteurs AB , AC et BC
  • 2) les points A,BetC sont-ils alignés ? justifier la réponse
  • 3) Donner une représentation paramétrique de la droite (AB)
  • 4) Soit (D)une droite définie par l’équation cartésienne suivante (D):2x5y9=0, Montrer que (D)//(AB)
  • 5) Soit (Δ) une droite définie par la représentation paramétrique suivante (Δ):{x=3+2t y=3+3t/(tR)
  • a) Déterminer une équation cartésienne de la droite (Δ) .
  • b) Montrer que (D)et(Δ) sont sécantes.
  • c) Déterminer les coordonnées du point I le point d’intersection de (D)et(Δ).
  • 6) Soit m un nombre réel. On considère les droites (Δ) et (D) telles que (Δ):12mx+(3m+2)y+5=0 et (D):2xy4=0
  • Déterminer la valeur de m pour laquel (Δ)(D) .

1.5

01

0.75
01

1.5
0.75
01









01

 


Exercice 03 : facultatif sur les polynômes 1,5pts.



Soit un polynôme de degré 1 tel que H(2)=13 et H(3)=23 .Déterminer l’expression de H(x) .


1.5

Bon chance . slv partager ce Devoir avec vous amis
  • Facebook
  • pinterest
  • twitter
  • whatsapp
  • LinkedIn
Read also × +
Afficher les commentaires